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Encoding specificity in Ca*+ 
signalling systems 
Martin R. McAinsh and Alistair M. Hetherington 

Ca2+ acts as a second messenger in many of the diverse range of signal- 
transduction pathways of plants. This raises fundamental questions regarding 
the mechanism(s) by which these pathways can be specific and how Ca2’- 
based signalling systems can be used to produce the graded physiological 
responses that are typical of many extracellular stimuli. Recent studies of 
stimulus-response coupling have begun to uncover some of the answers to 
these questions. 

T he Ca” cation is now firmly estab- 
lished as an intracellular second 
messenger that couples a wide range 

of extracellular stimuli to characteristic 
responses in plant cells. Since initial reports 
of a stimulus-induced increase in the concen- 
tration of cytosolic free Ca” ([Ca”‘],,,,) in 
higher plants’. there has been a massive 
increase in the number of signalling systems 
known to use [Ca”],,, as an intracellular 
second messenger’. However, the very wide- 
spread occurrence of this second messenger 
has prompted researchers to ask how Ca”- 
based signalling systems can be specific. 
The importance of this question is well illus- 
trated in stomata1 guard cells. To achieve the 
optimum stomata1 aperture under a specific 
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set of environmental conditions, guard cells 
integrate signals from a range of often 
conflicting extracellular stimuli, many of 
which use Ca” as a second messenger. For 
example, a potential problem arises when 
the guard cell encounters stimuli such as 
the plant hormones abscisic acid (ABA) 
(Ref. I) and auxin’. Both of these employ 
Ca” in their signal-transduction pathways, 
but individually the two hormones have 
opposing effects on stomata1 aperture. An 
additional problem is how plants produce 
graded responses using Ca“-based signal- 
ling systems. Most plant cells do not produce 
an ‘all or nothing’ response to extracellular 
stimuli - instead, the magnitude of the 
response is usually directly related to the 

strength of the stimulus. This article high- 
lights some of the recent advances that help 
explain the specificity of Ca”-based sig- 
nalling systems. 

Physiological address 
Specificity in Ca” signalling systems is ini- 
tially controlled by whether or not a cell is 
competent to respond to a given stimulus. 
This is dependent on the cell expressing 
genes encoding the range of signalling com- 
ponents comprising the ‘signalling cassette”’ 
that is required for the transduction of a pat- 
titular signal. In turn, the pattern of genes 
expressed will be dictated by the local envi- 
ronment of the cell and on the battery of 
environmental stimuli to which the cell has 
been exposed during development. We have 
termed this the ‘physiological address’ of the 
ce115. For example, it is unlikely that cells that 
do not express the genes encoding the elic- 
itor-activated, Ca’--permeable ion channel 
would be able to respond to the oligopeptide 
elicitor derived from Phytophrhoru sojae”. 
Further support for the concept of the physio- 
logical address comes from investigations of 
ABA signalling in guard cells. It has been 
proposed that the growth history of the plant 
has a marked influence on whether guard 
cells employ a Ca’+-dependent signalling 
pathway to transduce the ABA signal’. 
Therefore, these data suggest that specificity 
is dictated initially by the physiological 
address of the cell. 
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Fig. 1. Increases in cytosolic free Ca” ([Ca”],,,) in guard cells of open stomata of 
Commefina communis in response to 100 nM absdisic acid (ax) and 1 mM external Ca” 
(d-f). The [Ca”lcst was monitored using the fluorescent Ca” indicators fura- and indo-l 
microinjected into the cytosol of individual guard cells, The distribution of ‘resting’ [Ca’+JcV, 
(a. d) and stimulus-induced increases in [Ca2+lcV, approximately 15 s (b, e) and 2 min (c, f) 
following the addition of the stimulus are indicated by colour (blue indicates low [Ca?‘],,,; 
red indicates high [Ca’+!J. The images show the heterogeneous nature of the stimulus- 
induced increases in [Ca-+lci,. These data suggest that plant cells have the capacity to encode 
specificity in the Ca” signai in the form of localized increases in [Ca”],,,. Reproduced, with 
permission, from Refs 2 and 10. 

The Ca” signature - a stimulus-specific 
Ca2+ signal 
Given that the cell is competent to respond to 
a range of stimuli through the generation of a 
Ca” signal (i.e. a stimulus-induced increase 
in [Ca’+],,,), how then does it differentiate 
between different Ca”-mobilizing stimuli? 
The answer may lie in the ability of cells to 
generate increases in [Ca’+lc>, that are 
unique, in terms of their spatio-temporal 
characteristics, in response to an individual 
stimulus. We have referred to such stimulus- 
specific Ca” signals as ‘Ca” signatures”. 
Figure 1 shows a series of digital ratio 
images of stomata1 guard cells with CaZt in- 
dicators loaded into the cytosol. This type of 
analysis provides maps of the concentration 
of Ca” inside the cell, and these images 
clearly show the heterogeneous nature of 
stimulus-jnduced jncreases in [Ca’*]cy,, with 
both hot-spots and Ca”-quiescent regions. 
This suggests that plant cells certainly have 
the capacity for specificity in the form of 
localized increases in [Caz+]cyt. In animal 
cells, such increases are known to play an 

important role in defining signal specificity. 
For example, in AtT20 cells (a mouse pi- 
tuitary cell line), it has been shown that 
elevations in nuclear Ca’+ control Ca’+-acti- 
vated gene expression via the cyclic AMP 
response element. while increases in [Ca’+lcyt 
regulate gene expression through the serum 
response element’. 

Recent evidence also suggests a role for 
temporal heterogeneities - differences in the 
kinetics of stimulus-induced increases in 
[Ca”+lci, - in the generation of the Ca’+ signa- 
ture inplants. Oscillations’“~” and waves’” in 
[Ca’+]cV, have both been reported in plant 
cells. In guard cells, it has been shown that 
the pattern of oscillations induced by external 
Ca”+correlates directly with the concentration 
of the stimulus and the magnitude of the final 
response’“. In addition, the process of cold 
acclimation is associated with a change in the 
cold-shock Ca2+ signature”. Taken together, 
these data demonstrate a potential mecha- 
nism for producing the important graded 
response described previously via modifi- 
cations to the kinetics of the Ca” signature. 

A 

Response X 

‘A 

III-L 

1 

C Stimulus X 
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Fig. 2. Encoding signalling information 
in the amplitude, A (also termed ‘ana- 
logue’-encoded information): and in the 
frequency, F (also termed ‘digital’- 
encoded information), of Ca” spikes and 
oscillations in cytosolic free Ca”. For 
example. stimulus X may induce one 
pattern of oscillations, with amplitude A 
and frequency F, giving response X; a 
second stimulus, Y, may induce a com- 
pletely different pattern of oscillations, 
with amplitude 0.5A and frequency 2F, 
to give a different response: Y. 

Work in animal cells has shown clearly 
that differences in the kinetics of the increase 
in [Ca’+],..t are important for encoding speci- 
ficity in the Ca” signal. Stimulus-induced 
increases in [Ca’+lcV, can occur in the form of 
spikes, waves, oscillations and plateaus, all 
of which have the potential to encode 
signalling information. It was recently 
demonstrated that the amplitude and dur- 
ation of Ca’+ signals differentially control 
the activation of transcriptional regulators’“. 
Furthermore, work in pancreatic acinar 
cells” has shown that agonist-induced Ca”’ 
spikes in the micromolar range are necessary 
for the induction of exocytosis, whereas Ca” 
spikes in the submicromolar range are asso- 
ciated with the activation of luminal and 
basal ion channels. 

Perhaps the most intensively studied 
aspect of Ca’+ signalling in terms of encoding 
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Fig. 3. A model illustrating the potential role of vacuolar Ca” channels in the generation of 
a stimulus-specific Ca” signature in stomata1 guard cells. Different stimuli could induce an 
increase in cytosolic free Ca” ([Ca’+],,,) through the release of vacuolar Ca” via separate 
Ca’+-mobilizing pathways. For exampie, stimuli A and B may cause Ca” release through 
channels gated by inositol (1,4,5)-trisphosphate [Ins(1,4,5)P,] and cyclic ADP-ribose 
(cADPR), respectively, whereas stimuli C and D may cause Ca” release through two dis- 
tinct, voltage-gated channels (V,). Differences in the distribution, gating properties or sen- 
sitivity to regulatory factors (voltage, Ca” and pH) of these channels will all contribute to 
the spatial and temporal heterogeneities observed in stimulus-induced increases in [CaZ’],“,. 
In turn, this will increase the amount of information encoded in the Ca” signature. For rea- 
sons of clarity, the contribution of ‘cross-talk’ between signalling cassettes (i.e. whether 
specific Ca” release channels and/or Cal+-mobilizing second messengers act as com- 
ponents of the signal transduction pathways of several different stimuli) is not included in 
this model. 

specificity in the Ca’+ signal has been the 
role of Ca” spikes and oscillations in 
[Ca’+lcvt (Ref. 16). In animals, the mecha- 
nisms of generation and maintenance of such 
kinetics include both positive and negative 
feedback, often invoking the release of Ca” 

(also termed ‘analogue’ and ‘digital’- 
encoded information, respectively) of the 
spikes and oscillations in [Ca2+lcY, (Fig. 2) 
(Ref. 19). \ / 

Several components of Ca2+ signalling 
systems in plants have been identified that 
may constitute part of the mechanism(s) by 
which information is encoded in the Ca’+ sig- 
nature. Two distinct voltage-gated Ca2+ 
release channels, which have the ability to 

from intracellular stores through the action 
of additional second messengers such as 
inositol (1,4,5)-trisphosphate (Ins(1,4,5)P,], 
and fluxes of Ca’+ across the plasma mem- 
brane or between intracellular stores”-“. 
Theoretical models also exist to account for 
how information might be encoded in the 
pattern of oscillations’“. Information can be 
encoded in both the amplitude and frequency 

perform almost exactly the same function in 
viva, co-reside in the vacuolar membranes of 
guard cells*‘. More recent work has also 
reported the presence of lns(1,4,5)P, and 
cyclic ADP-ribose-sensitive Ca*’ release 
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Fig. 4. A model for decoding the infor- 
mation encoded in spikes and oscil- 
lations in cytosolic free Cal’ ([Ca’+],,,) 
based on phosphorylation-dephosphoryl- 
ation events (e.g. the coupled action of a 
Ca”-activated phosphatase and a Ca’+- 
independent kinase). Stimulus-induced 
Ca” spikes or oscillatory changes in 
P2+lcy, would modify the activity of a 
Ca”-dependent phosphatase while hav- 
ing no effect on the activity of a Ca”- 
independent kinase. Therefore, the level 
of the phosphorylated form of a target 
protein would go up and down against 
the constant background of kinase activ- 
ity. During low-frequency Ca” spiking 
and oscillations in [Ca’+lcv, with a long 
period, the protein will become highly 
phosphorylated in-between Ca” peaks; 
during spiking and oscillations with a 
higher frequency and a shorter period, 
much less phosphorylation will occur, 
resulting in the maintenance of a larger 
fraction of the dephosphorylated protein. 
The presence of phosphatases and 
kinases that exhibit different Ca” acti- 
vation kinetics could allow differential 
decoding of stimulus-specific patterns of 
Ca” spikes and oscillations in [Ca”],,, 
into a range of physiological responses 
that can occur downstream of phos- 
phorylation events. 

pathways in the same vacuole in red beetZ2. 
These channels may form part of the signal 
transduction pathways of different stimuli. 
Differences in their distribution, gating prop- 
erties or sensitivity to other factors such as 
voltage, Ca’+ and pH may all contribute to 
the spatial and temporal heterogeneities 
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observed in stimulus-induced increases in 

[Ca2+lCytt and thus increase the amount of 
information encoded in the Ca*+ signature 
(Fig. 3). Although research into this area is at 
an early stage in plants, it is already apparent 
that the concept of the Ca’+ signature war- 
rants further investigation. 

Decoding Ca” signatures 
Having generated the Ca’+ signal, the next 
requirement is to position the other elements 
of the signalling cassette in such a way that the 
Ca” signal can be relayed to the final effector 
responsible for the production of the response. 
For efficient transduction of the CaZ+ signal, 
the downstream elements in the signalling 
cassette need to be located close to the site of 
the increase in [Ca”],,,. This is particularly 
important when these increases are highly 
localized. As already discussed, increases in 
nuclear Ca” are important in the control of 
specificity. There is also evidence that 
indicates that CaZt concentrations immedi- 
ately below the plasma membrane may be 
subject to rapid and dramatic changes. Use of 
a new Ca”’ indicator, FFP18, to monitor 
immediately submembrane, depolarization- 
induced changes in [Ca”],,, has revealed that 
submembrane increases in [Ca2+]cV, reach 
micromolar concentrations, while the mean 
[Ca’+lcY, recorded using fura- rises only to a 
few hundred nanomolar23. These data suggest 
a mechanism for selectively activating Ca’+- 
dependent processes located in the plasma 
membrane, and also warn of the potential 
dangers of conclusions based solely on 
indicators of global increases in [Ca’+lcy,. The 
importance of these highly localized increases 
in [Ca2+lc,, in the control of stimulus 
specificity ‘has recently been highlighted14. If  
highly localized increases in [Ca”],,, also 
occur in plants, they could be very important 
in the control of plasma membrane ion 
channels that are known to be activated by 
Ca*+. Several studies suggest that plant cells 
are capable of generating increases in [Ca2t]cY, 
that are highly localized and that occur in the 
immediate region of the plasma membrane. 
For example, hypoosmotic shock induces 
transient elevations in [Ca2+lc,,, that are 
initiated at the apex of rhizoids of the marine 
alga Fucus”. Similar localized increases have 
also been reported in growing pollen tubes”. 

It is only possible to speculate about the 
signalling machinery downstream of Ca’+ 
that is responsible for decoding the infor- 
mation encoded in the Ca’+ signature. 
However, recent work has pointed to a role 
for calmodulin isoforms in the control of 
specificity”.‘x. In turn, differential expres- 
sion of calmodulin genes could be strongly 
influenced by the physiological address of 
the cell. In animals, it has also been pro- 
posed that protein phosphorylation may 

provide a mechanism by which the 
signalling information encrypted in Cal+ 
spikes and oscillations in [Ca’+lcvt may be 
deciphered via the coupled action of a phos- 
phatase and kinase*“. A model involving a 
Ca’+-activated phosphatase and a Ca’+-inde- 
pendent kinase could be envisaged (Fig. 4). 
Ca”-dependent phosphorylation and 
dephosphorylation events have been impli- 
cated in the regulation of guard cell 
turgor3”.3’, and therefore provide a plausible 
mechanism for decoding the signalling 
information encoded in [Ca’+luYt oscillations 
observed in this cell type. The presence of 
phosphatases and kinases with different 
Ca’+ activation kinetics could allow differ- 
ential decoding of stimulus-specific patterns 
of oscillations in [Ca’+lc,, into a range of 
physiological responses that can occur 
downstream of phosphorylation events. 

Conclusion 
These data indicate that increases in [Ca2+lcy, 
in plants can be either localized or global, and 
show how specificity can be dictated by the 
local environment and the conjunction of the 
appropriate signal effecters. In addition, it is 
clear that the effective transmission of the 
signal is dependent on the appropriate down- 
stream elements in the signalling cassette 
being positioned correctly. The subcellular 
location of these signalling elements in plants 
is currently being investigated. 
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contains links to many informative sites (Box 1). 
Happily, this is true whether your interest is plant 
pathology or symbiosis. The linked sites are 
carefully selected, obviating the need to sift 
through dead-end URLs. There are essential 
connections to individual labs. institutions, 
publications and societies, with the best sites 
being mostly US-based. And if you need to 
regenerate the zeal for discovery, or to instil it in 
others, there is plenty of useful material. In Fun 
Facts About Fungi, you can watch as a morel 
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stocks. The only disappointing feature is that the 
original, clear listing of linked sites on the BSPP 
site is not being updated regularly. 
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Lasers and plant 
cells 
Confocal Laser Scanning Microscopy 
by C. J. R. Sheppard and D. M. Shotton 
Bios, 1997. f17.95 pbk (xii t 106 pages) 
lSBN1 872748724 

This book is one of a series of concise handbooks 
published in association with the Royal 
Microscopical Society and. in accordance with 
the fields of expertise of the two authors, deals 
with many aspects of confocal microscopy. As 
discussed, the confocal laser scanning micro- 
scope is used in the fluorescent mode for observ- 
ing biological specimens. This is mostly because 
cell components and molecules can then be visu- 
alized after they have been tagged, directly or 
indirectly, with fluorescent dyes. 

Plant cell biologists received the technique of 
confocal fluorescence microscopy with enthusi- 
asm, because it could solve the problems, 
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